A Sparsity-Based Regularization Approach for Deconvolution of Full-Waveform Airborne Lidar Data
نویسندگان
چکیده
Full-waveform lidar systems capture the complete backscattered signal from the interaction of the laser beam with targets located within the laser footprint. The resulting data have advantages over discrete return lidar, including higher accuracy of the range measurements and the possibility of retrieving additional returns from weak and overlapping pulses. In addition, radiometric characteristics of targets, e.g., target cross-section, can also be retrieved from the waveforms. However, waveform restoration and removal of the effect of the emitted system pulse from the returned waveform are critical for precise range measurement, 3D reconstruction and target cross-section extraction. In this paper, a sparsity-constrained regularization approach for deconvolution of the returned lidar waveform and restoration of the target cross-section is presented. Primal-dual interior point methods are exploited to solve the resulting nonlinear convex optimization problem. The optimal regularization parameter is determined based on the L-curve method, which provides high consistency in varied conditions. Quantitative evaluation and visual assessment of results show the superior performance of the proposed regularization approach in both removal of the effect of the system waveform and reconstruction of the target cross-section as compared to other prominent deconvolution approaches. This demonstrates the potential of the proposed approach for improving the accuracy of both range measurements and geophysical attribute retrieval. The feasibility and consistency of the presented approach in the processing of a variety of lidar data acquired under different system configurations is also highlighted.
منابع مشابه
Improved Approach to Lidar Airport Obstruction Surveying Using Full- Waveform Data
Over the past decade, the National Oceanic and Atmospheric Administration’s National Geodetic Survey, in collaboration with multiple organizations, has conducted research into airport obstruction surveying using airborne lidar. What was initially envisioned as a relatively straightforward demonstration of the utility of this emerging remote sensing technology for airport surveys was quickly sho...
متن کاملAirborne LiDAR for the Detection of Archaeological Vegetation Marks Using Biomass as a Proxy
In arable landscapes, the airborne detection of archaeological features is often reliant on using the properties of the vegetation cover as a proxy for sub-surface features in the soil. Under the right conditions, the formation of vegetation marks allows archaeologists to identify and interpret archaeological features. Using airborne Laser Scanning, based on the principles of Light Detection an...
متن کاملProcessing Full-waveform Lidar Data to Extract Forest Parameters and Digital Terrain Model: Validation in an Alpine Coniferous Forest
Small footprint discrete return lidar data have already proved useful for providing information on forest areas. During the last decade, a new generation of airborne laser scanners, called full-waveform (FW) lidar systems, has emerged. They digitize and record the entire backscattered signal of each emitted pulse. Fullwaveform data hold large potentialities. In this study, we investigated the p...
متن کاملPSO-Optimized Blind Image Deconvolution for Improved Detectability in Poor Visual Conditions
Abstract: Image restoration is a critical step in many vision applications. Due to the poor quality of Passive Millimeter Wave (PMMW) images, especially in marine and underwater environment, developing strong algorithms for the restoration of these images is of primary importance. In addition, little information about image degradation process, which is referred to as Point Spread Function (PSF...
متن کاملAirborne Lidar: Advances in Discrete Return Technology for 3D Vegetation Mapping
Conventional discrete return airborne lidar systems, used in the commercial sector for efficient generation of high quality spatial data, have been considered for the past decade to be an ideal choice for various mapping applications. Unlike two-dimensional aerial imagery, the elevation component of airborne lidar data provides the ability to represent vertical structure details with very high ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 8 شماره
صفحات -
تاریخ انتشار 2016